546 research outputs found

    Relaxing the Electroweak Scale: the Role of Broken dS Symmetry

    Full text link
    Recently, a novel mechanism to address the hierarchy problem has been proposed \cite{Graham:2015cka}, where the hierarchy between weak scale physics and any putative `cutoff' MM is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than MM through cosmological dynamics. In its simplest incarnation, the relaxion mechanism requires nothing beyond the standard model other than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine the requirements for successfully realizing the relaxion mechanism and point out that parametrically larger field excursions can be obtained for a given number of e-folds by simply requiring that the background break exact de Sitter invariance. We discuss several corollaries of this observation, including the interplay between the upper bound on the scale MM and the order parameter ϵ\epsilon associated with the breaking of dS symmetry, and entertain the possibility that the relaxion could play the role of a curvaton. We find that a successful realization of the mechanism is possible with as few as O(103)\mathcal O (10^3) e-foldings, albeit with a reduced cutoff M∼106M \sim 10^6 GeV for a dark QCD axion and outline a minimal scenario that can be made consistent with CMB observations.Comment: 16 pages, 3 figures. Version to appear in JHE

    Dark Matter and Vector-like Leptons From Gauged Lepton Number

    Full text link
    We investigate a simple model where Lepton number is promoted to a local U(1)LU(1)_L gauge symmetry which is then spontaneously broken, leading to a viable thermal DM candidate and vector-like leptons as a byproduct. The dark matter arises as part of the exotic lepton sector required by the need to satisfy anomaly cancellation and is a Dirac electroweak (mostly) singlet neutrino. It is stabilized by an accidental global symmetry of the renormalizable Lagrangian which is preserved even after the gauged lepton number is spontaneously broken and can annihilate efficiently to give the correct thermal relic abundance. We examine the ability of this model to give a viable DM candidate and discuss both direct and indirect detection implications. We also examine some of the LHC phenomenology of the associated exotic lepton sector and in particular its effects on Higgs decays.Comment: References and a few comments adde

    The changes in leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) in response to heavy metal stress

    Get PDF
    The effects of heavy metal stress on leaf reflectance of sugar maple seedlings (Acer saccharum Marsh) are examined. It is found that sugar maple seedlings treated with anomalous amounts of heavy metals in the rooting medium exhibited an increased leaf reflectance over the entire range of investigated wavelengths, from 475 to 1650 nm. These results conform to those of a previous investigation in the wavelengths from 475 to 660nm, but tend to contradict the previous study in the near infrared wavelengths from 1000 to 1650nm. The differences may possible be due to different water regimes in the two investigations

    Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy

    Get PDF
    Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory result

    Consequences of T-parity breaking in the Littlest Higgs model

    Full text link
    In this paper we consider the effects of the T-parity violating anomalous Wess-Zumino-Witten-Term in the Littlest Higgs model. Apart from tree level processes, the loop induced decays of the heavy mirror particles into light standard model fermions lead to a new and rich phenomenology in particular at breaking scales f below 1 TeV. Various processes are calculated and their signatures at present and future colliders are discussed. As a byproduct we find an alternative production mechanism for the Higgs boson.Comment: 30 page

    A Little Higgs Model with Exact Dark Matter Parity

    Full text link
    Based on a recent idea by Krohn and Yavin, we construct a little Higgs model with an internal parity that is not broken by anomalous Wess-Zumino-Witten terms. The model is a modification of the "minimal moose" models by Arkani-Hamed et al. and Cheng and Low. The new parity prevents large corrections to oblique electroweak parameters and leads to a viable dark matter candidate. It is shown how the complete Standard Model particle content, including quarks and leptons together with their Yukawa couplings, can be implemented. Successful electroweak symmetry breaking and consistency with electroweak precision constraints is achieved for natural paramters choices. A rich spectrum of new particles is predicted at the TeV scale, some of which have sizable production cross sections and striking decay signatures at the LHC.Comment: 25 pp. LaTeX; v2: improved discussion of precision constraints and references added; v3: summary of model structure added at beginning of sect. 2, version published in JHEP; v4: small correction in Fig.5; v5: correction to Fig.

    Search for Higgs Bosons in SUSY Cascade Decays and Neutralino Dark Matter

    Full text link
    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is a well motivated theoretical framework, which contains an extended Higgs sector, including a light Higgs with Standard Model-like properties in most of the parameter space. Due to the large QCD background, searches for such a Higgs, decaying into a pair of bottom quarks, is very challenging at the LHC. It has been long realized that the situation may be ameliorated by searching for Higgs bosons in supersymmetric decay chains. Moreover, it has been recently suggested that the bobber decay channel may be observed in standard production channels by selecting boosted Higgs bosons, which may be easily identified from the QCD background. Such boosted Higgs bosons are frequent in the MSSM, since they are produced from decays of heavy colored supersymmetric particles. Previous works have emphasized the possibility of observing boosted Higgs bosons in the light higgsino region. In this work, we study the same question in the regions of parameter space consistent with a neutralino dark matter relic density, analyzing its dependence on the non-standard Higgs boson, slepton and squark masses, as well as on the condition of gaugino mass unification. In general, we conclude that, provided sleptons are heavier than the second lightest neutralinos, the presence of boosted Higgs is a common MSSM feature, implying excellent prospects for observation of the light MSSM Higgs boson in the near future.Comment: 30 pages, 9 figures. v2: New Xenon 100 results implemented, version to appear in PR

    A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales

    Get PDF
    A comparison of microcompression and microtensile methods to study mechanical properties of electrodeposited nanocrystalline (nc) nickel has been performed. Microtensile tests that probe a volume of more than 2 × 106 μm3 show reasonable agreement with results from microcompression tests that probe much smaller volumes down to a few μm3. Differences between the two uniaxial techniques are discussed in terms of measurements errors, probed volume and surface effects, strain rate, and influence of stress state. Uniaxial solicitation in compression mode revealed several advantages for studying stress-strain propertie

    Laser-induced chemical liquid-phase deposition of copper on transparent substrates

    Get PDF
    Laser-induced chemical liquid phase deposition allows maskless manufacturing of metallic structures on the surface of dielectrics and is prospected to be a promising tool in the field of microelectronics and microfluidics. The aim of the work presented here is to combine this deposition method with a related micro-structuring method known as laser-induced backside wet etching. Fabricating both, microstructured surface structures and subsequent deposition of conducting patterns within the same setup would be an interesting tool for rapid prototyping.To demonstrate the functional principle of this combined approach conductive copper lines were deposited at the backside of both polished and structured soda lime glass substrates by using a focused, scanning ns-pulsed Ytterbium fiber laser at 532nm wavelength. The deposition process is initiated by a photo induced reaction of a CuSO4-based liquid precursor in contact with the backside of the substrate. The obtained metallic copper deposits are crystalline, stable under ambient conditions and have a conductivity in the same order of magnitude as bulk copper
    • …
    corecore